Isoliquiritigenin suppresses human T Lymphocyte activation via covalently binding cysteine 46 of IκB kinase
نویسندگان
چکیده
The efficacious practice of precision personalized medicine requires a more exact understanding of the molecular mechanisms of drug, hence then it is necessary to identify the binding site of the drugs derived from natural sources. In the study, we investigated the suppressive effect and underlying mechanism of isoliquiritigenin (2',4',4-trihydroxychalcone; ILG), a phyto-flavonoid, on human T lymphocyte activation in vitro and in vivo. The results showed that ILG dose-dependently suppressed human T cell activation via suppressing IκBα phosphorylation and degradation, NF-κB nuclear translocation and IKKβ activity. Molecular docking results predicted that cysteine 46 (Cys-46) is probably the binding site of ILG on IKKβ, and this prediction has been validated by competition assay and kinase assay. To further verify the binding site of this compound in vivo, IKKβC46A transgenic (IKKβC46A) mice were generated. We found that ILG had a less potent immune-suppressive effect in homozygous IKKβC46A mice than IKKβ wild type (IKKβ wt) littermates with the delay-type hypersensitivity (DTH), suggesting that ILG cannot significantly suppress the inflammation due to the mutation of Cys-46 in the transgenic mice. Collectively, our findings indicate that the ILG inhibited T cell activation in vivo and in vitro via directly binding to IKKβ Cys46.
منابع مشابه
Targeting interleukin-2-inducible T-cell kinase (ITK) and resting lymphocyte kinase (RLK) using a novel covalent inhibitor PRN694.
Interleukin-2-inducible T-cell kinase (ITK) and resting lymphocyte kinase (RLK or TXK) are essential mediators of intracellular signaling in both normal and neoplastic T-cells and natural killer (NK) cells. Thus, ITK and RLK inhibitors have therapeutic potential in a number of human autoimmune, inflammatory, and malignant diseases. Here we describe a novel ITK/RLK inhibitor, PRN694, which coval...
متن کاملPleiotropic potential of dehydroxymethylepoxyquinomicin for NF-κB suppression via reactive oxygen species and unfolded protein response.
Dehydroxymethylepoxyquinomicin (DHMEQ) is a low-m.w. compound that strongly inhibits NF-κB. Previous reports showed that DHMEQ directly binds to specific cysteine residues of NF-κB subunits and thereby inhibits their nuclear translocation and DNA binding. In this work, we describe novel mechanisms by which DHMEQ suppresses cytokine-triggered activation of NF-κB. We found that sustained exposure...
متن کاملInhibition of janus kinase 2 by compound AG490 suppresses the proliferation of MDA-MB-231 cells via up-regulating SARI (suppressor of AP-1, regulated by IFN)
Objective(s): The Janus kinase-signal transducers and activators of transcription signaling pathway (JAK/STAT pathway) play an important role in proliferation of breast cancer cells. Previous data showed that inhibition of STAT3 suppresses the growth of breast cancer cells, but the associated mechanisms are not well understood. This study aims to investigate the effect and associated mechanisms...
متن کاملMutation of cysteine 46 in IKK-beta increases inflammatory responses.
Activation of IκB kinase β (IKK-β) and nuclear factor (NF)-κB signaling contributes to cancer pathogenesis and inflammatory disease; therefore, the IKK-β-NF-κB signaling pathway is a potential therapeutic target. Current drug design strategies focus on blocking NF-κB signaling by binding to specific cysteine residues on IKK-β. However, mutations in IKK-β have been found in patients who may even...
متن کاملHuman immunodeficiency virus-1 Tat activates NF-κB via physical interaction with IκB-α and p65
Nuclear factor (NF)-κB is a master regulator of pro-inflammatory genes and is upregulated in human immunodeficiency virus 1 (HIV-1) infection. Mechanisms underlying the NF-κB deregulation by HIV-1 are relevant for immune dysfunction in AIDS. We report that in single round HIV-1 infection, or single-pulse PMA stimulation, the HIV-1 Tat transactivator activated NF-κB by hijacking the inhibitor Iκ...
متن کامل